CAMR at SemEval-2016 Task 8: An Extended Transition-based AMR Parser

نویسندگان

  • Chuan Wang
  • Sameer Pradhan
  • Xiaoman Pan
  • Heng Ji
  • Nianwen Xue
چکیده

This paper describes CAMR, the transitionbased parser that we use in the SemEval-2016 Meaning Representation Parsing task. The main contribution of this paper is a description of the additional sources of information that we use as features in the parsing model to further boost its performance. We start with our existing AMR parser and experiment with three sets of new features: 1) rich named entities, 2) a verbalization list, 3) semantic role labels. We also use the RPI Wikifier to wikify the concepts in the AMR graph. Our parser achieves a Smatch F-score of 62% on the official blind test set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIGA at SemEval-2016 Task 8: Impact of Smatch Extensions and Character-Level Neural Translation on AMR Parsing Accuracy

Two extensions to the AMR smatch scoring script are presented. The first extension combines the smatch scoring script with the C6.0 rule-based classifier to produce a human-readable report on the error patterns frequency observed in the scored AMR graphs. This first extension results in 4% gain over the state-of-art CAMR baseline parser by adding to it a manually crafted wrapper fixing the iden...

متن کامل

ICL-HD at SemEval-2016 Task 8: Meaning Representation Parsing - Augmenting AMR Parsing with a Preposition Semantic Role Labeling Neural Network

We describe our submission system to the SemEval-2016 Task 8 on Abstract Meaning Representation (AMR) Parsing. We attempt to improve AMR parsing by exploiting preposition semantic role labeling information retrieved from a multi-layer feed-forward neural network. Prepositional semantics is included as features into the transition-based AMR parsing system CAMR (Wang, Xue, and S. Pradhan 2015a). ...

متن کامل

UIT-DANGNT-CLNLP at SemEval-2017 Task 9: Building Scientific Concept Fixing Patterns for Improving CAMR

This paper describes the improvements that we have applied on CAMR baseline parser (Wang et al., 2016) at Task 8 of SemEval-2016. Our objective is to increase the performance of CAMR when parsing sentences from scientific articles, especially articles of biology domain more accurately. To achieve this goal, we built two wrapper layers for CAMR. The first layer, which covers the input data, will...

متن کامل

CMU at SemEval-2016 Task 8: Graph-based AMR Parsing with Infinite Ramp Loss

We present improvements to the JAMR parser as part of the SemEval 2016 Shared Task 8 on AMR parsing. The major contributions are: improved concept coverage using external resources and features, an improved aligner, and a novel loss function for structured prediction called infinite ramp, which is a generalization of the structured SVM to problems with unreachable training instances.

متن کامل

UofR at SemEval-2016 Task 8: Learning Synchronous Hyperedge Replacement Grammar for AMR Parsing

In this paper, we apply a synchronous-graphgrammar-based approach to SemEval-2016 Task 8, Meaning Representation Parsing. In particular, we learn Synchronous Hyperedge Replacement Grammar (SHRG) rules from aligned pairs of sentences and AMR graphs. Then we use Earley algorithm with cubepruning for AMR parsing given new sentences and the learned SHRG. Experiments on the evaluation dataset demons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016